Connectivity Options

95

Storage Networks: The Complete Reference

from the integration of multiple storage devices. Understanding the structure of

these devices can help effectively utilize these technologies to support a single
complex workload or a combination of disparate workloads. Underlying these concepts
of storage architecture, device cperation, and anatomy are the connectivity strategies
that complete the data highway system. All these elements will begin to come together
in this chapter as we discuss the connectivity options available to transport and deliver
data from the storage system components to the computer.

Traditional system connectivity strategies have long been based upon bus architectures.
A computer bus is defined as the lines and controls that connect the diverse components
of a computer, ultimately making it a complete system. As we discussed in Chapter 5,
this connectivity is required for the internal server components, CPU, RAM, and cache.
Obviously, we know that external I/O components, such as storage devices, disks and
tapes, and other peripherals like displays, keyboards, and mouse devices also require
this connectivity, but in a different manner. This chapter will begin to explain the
components and operation of typical bus- and network-oriented technologies, and the
creative uses of various buses and network connectivity components that form the
foundation for large multiple user systems.

The ability to connect storage systems through networks has greatly impacted the
storage I/0 industry. All of it surrounds the connectivity strategy, and the movement
of storage systems from discrete bus technologies to network-oriented architectures.
Understanding the bus is paramount to leveraging the movement of storage I/O into
this new network model.

Another important reason to cover traditional bus technologies contrasted against
the new network interconnects is that existing buses do not go away. They remain, and
will remain, fundamental to getting data to and from the CPU (refer to Chapter 5 for
more information). Moving data from the storage device through the storage system
and on to the server within a network infrastructure still requires the effective operation
of an internal bus. In order to be effective, traditional bus components must be optimized
since they become parts of a new storage connectivity infrastructure. Otherwise, the
most advanced and feature-rich storage network falls short at the server.

In previous chapters, we discussed how effective storage systems are developed

Connections: Getting on the Bus
Internal traffic within a computer’s motherboard is handled through a set of fast
connections etched into the circuitry, enabling transfer of data to and from the CPU and
internal temporary data locations—for example, RAM, cache, and CPU registers. The
connectivity for external (external to the motherboard) hardware is handled through
the edge (of the board) as an expansion to the board. Take a look at Figure 7-1, which
shows a universal computer bus.

These connections to the outside world (external to the motherboard) are referred to
as expansion buses and I/0 channels. They provide hardware attachment mechanisms

Chapter 7: Connectivity Options

- T Tape)
CPU Host b— Tape
: § {Controller I [
L vAdaptgi | Tape Tape
_cru __ Disk -~ ~—— Drive0 Drivel
e e Host — - DtlSkll
N .Lontrotler | |
RAM Adapter| ' Disk0 Disk 1
| Network
e e Interface
L1, 12 Cache E— ‘Adapter

that extend the system capabilities beyond what is on the motherboards. This is where 170
devices are connected and, as we discussed earlier, where the host adapter components are
attached. It is here where we require our first transfer ticket provided by the host adapters,
to get from one bus to the other. As the internal components require a bus to connect to
each other, the I/O devices also have that same need. As Figure 7-1 illustrates, the internal
bus, I-bus, is adapted to the I/O bus, each transferring and controlling data for the
connected components. Each bus controls devices with different mechanisms, different
timings, and capacities.

The buses provide the following fundamental functions. As we can see, these are
largely electronic mechanisms that do their work internally through a host of components.
As we will explore later, the bus mechanisms must be able to work with particular devices
that speak their language and have common electronic traits to move data.

Underlying all these sophisticated and complex electronics are several fundamental
elements that make up the characteristics of the 1/0 bus, as shown in Figure 7-2. These
include: throughput (commonly referred to as bandwidth), address space (how wide
the bus is), interrupt processing (or can I react to external events and change processing
modes?), and electro-mechanical attributes, such as how long can I be before my signal is
degraded, and am I a circuit board or a backplane—in other words, will I connect to the
motherboard or will the motherboards connect to me.

Bandwidth

Bandwidth is the amount of information the bus can transport during a given time.
This is usually measured in MB per second. This is a derivative of clock speed and data
width. In other words, a bus using a 5SMHz clock speed and a 4 byte data width has a
throughput, or bandwidth, of 5 x 4 = 20MB per second. Keep in mind this is what is
called aggregate throughput; it is reduced by protocol overhead. We will discuss real
speeds in more detail later in the chapter.

Storage Networks: The Complete Reference

Clocking Sigﬁéié‘

Flow Control \“"w—-——«""”/

CPU b S
reemimr ek * __ AddressLines . Tape

Data Lines Host
¥

Interrupt Lines ,,“},‘,1325,";2

Address Lines Disk
Data Lines Host

Interrupt Lines m

_Address Lines Network
Data Lines Interface
‘Adapter

RAM —
—

I
i
|
I
I
‘ Ll, L2 Véac;h%—— + Interrupt Lines

Bus/Adapter Power
and Grounding

Addressing

The address space provides the capability to determine unique identities for source and

destination of communications within the bus itself. This is determined by the width of

the address component; the larger the address space, the more device operations can

be supported. Generally, most buses operate today with 32-bit addressing architectures,
providing an address space of 4GB. (This is important if you are working with older bus
technology or an advanced technology such as InfiniBand or Fibre Channel; see Part V.)

Interrupt Functions

An external event may occur at any time and the bus must be able to take action in
order to continue processing. This interrupt processing is the fundamental concept
behind the interactive system’s processing that must occur with multiuser, multitasking
workloads. The I/O bus must be capable of interruption of a data transfer from disk
to tape for an event with a higher priority. Be it an error processing routine or a call to
read a block of data from an application, without this capability the bus could not be
used for interactive applications, instead it could only be used for a single device.

Electro-Mechanical

Internal buses on the motherboard may only be inches long; external I/O connections
must extend several feet or meters. These connections are generally some type of

Chapter 7: Connectivity Options

shielded cable and will be placed into areas of electromagnetic interference. I/O buses
must have attributes that protect the signal’s integrity while providing an adequate
physical extensibility. The cable for an 1/0 bus is defined with regard to its maximum
length, resistance, whether shielded or unshielded.

The motherboard of a computer will have a number of connections or slots that are
nothing more than bus connections. Host adapters are connected at these edge points.
The other type of connectivity is the backplane (refer to Chapter 6). The backplane
can have no other electronics or circuitry than to provide connection points for host
adapters. However, a backplane can also be used to connect complete motherboard
systems together along a shared bus. These will be used in tightly coupled SMP and
MPP systems. They are also becoming popular for use with integrating thin computing
nodes (for example, a system-on-board or a motherboard with no peripherals), which
entails sharing a common external bus that may be a network or another type of system
interconnect—used explicitly in something referred to as blade computing. (Refer to
Chapter 20 regarding future protocols such as InfiniBand, an external example, and
Rapid IO, an internal example.)

The importance of bus evolution is visible in terms of the clocking signal increases,
numbers of data lines, interrupt sharing, and something called bus mastering. Bus
mastering allowed additional processors and devices (for example, IDE and SCSI
adapters) to contend for bus processing. By contrast, previous architectures where the
system processor had complete control of the bus and scalability became problematic.

The decoupling of the bus through bus mastering from a single point of control came
with IBM’s Micro Channel Architecture (MCA); however, it was enhanced with EISA to
include auto and software configuration functions. This first laid the groundwork for
plug 'n play functionality, while the second aided in reconfiguring the bus (changing
device priorities, addressing, and so on).

This standard bus architecture (Extended Industry Standard Architecture or EISA)
extends the ISA standard from a 16-bit to a 32-bit interface.

The physical decoupling and enhanced scalability of the bus was achieved with the
Peripheral Component Interconnect Standard (PCI) and the resulting PCI mezzanine
bus architecture. This was the first bus implementation not tightly coupled with the
system processor. This allowed the PCI bus to expand its connectivity by using a
re-configurable structure and bridging, as necessary, to add additional hardware devices.

___| Bus Operations

Buses operate by requesting the use of paths to transfer data from a source element
to a target element. In its simplest form, a controller cache, defined as a source,

Storage Networks: The Complete Reference

transfers data to a disk, defined as a target. The controller signals the bus processor
that he needs the bus. When processing, control is given to the controller cache
operation. It owns the bus for that operation and no one else connected to the bus
can use it. However, as indicated earlier, the bus processor can interrupt the process
for a higher priority process and give control to that device.

This is called a bus arbitration scheme, as shown in Figure 7-3. The devices connected
to the bus arbitrate for bus control based on a predefined set of commands and priorities.
The devices can be both source and target for data transfers. This type of internal
communication makes up the bus protocol and must be available to all sources and
targets—for example, connected devices that participate within the I/O bus.

Parallel vs. Serial

Bus operations will perform data transfer operations using parallel or serial physical
connections. These two connections perform the same task, but have distinct architectures,
each with their own pros and cons. It’s likely you’ll be confronted with each as storage
systems begin to integrate both for their strengths. Over and above this option is the
secondary choice of the type used within each category, such as point-to-point and
differential for parallel SCSI and various serial implementations. It’s important to
understand the limitations, as well as the strengths, when applying these to particular
application requirements.

Parallel connections for storage utilize multiple lines to transport data simultaneously.
This requires a complex set of wires making parallel cables quite large and thus

i SCSI Host
SCSI % Adapter
Host i requests
Adapter £ control
! & of Bus.
SCSI Bus arbitrates Wm%w
control for devices; I ¥
. in this case, Host . S . SCSIBus i
Adapter gets control ! DR 'y g
and sends command ; = T' i N
‘to Disk Controller. i b Tape Controller
‘ ! ; : k requests control
SCSI Disk Controller i . b of Bus; however,
becomes a target and SDC:’]: i 25;; ? ‘;:‘ishdenie‘d L‘mtil
receives command . : E igher priority
from Host Adapter. Controller 'f. Controller p Hgst AS apter
R 4 e wf device completes
T R transferring disk
command.

Chapter 7: Connectivity Options

subjecting them to an increased overhead of ERC (error, recovery, and correction),
length limitations, and sensitivity to external noise. Of the parallel connections, there
are two types: the single ended bus and the differential bus. The single ended bus is
just what it describes, a connection point where devices are chained together with a
termination point at the end. On the other hand, a differential bus is configured more
like a circuit where each signal has a corresponding signal. This allows for increased
distances and decreasing sensitivity to external noise and interference among the
multiple wires that make up the cable. Of these two parallel connections, differential
will be the more effective for high-end storage systems; however, they are also more
costly given the increases in function and reliability.

Serial connections are much simpler, consisting basically of two wires. Although
they pass data in serial fashion, they can do this more efficiently with longer distances,
and with increased reliability. High-speed network communications transmission media
such as ATM and fiber optics already use serial connections. Wide buses that use parallel
connections have the potential for cross-talk interference problems, resulting in intermittent
signaling problems, which ultimately show up in reliability and performance issues for
storage operation. The use of two wires allows substantially improved shielding. Although
it may seem counter-intuitive, serial connections can provide greater bandwidth than
wide parallel connections. The simpler characteristics of a serial connection’s physical
make-up allow a clock frequency to be increased 50 to 100 times, improving the throughput
by a multiple of 200.

| Differences in BusandNetworkArchltectures

Computer networks connect various devices of individual characteristics so they may
communicate with one another. Some networks are peer-oriented, where all the devices
are deemed equal and vie for network transport resources, transmission, and reception.
Other networks (the majority of networks in use today) are hierarchical, where some
devices have control and authority over other devices regarding who and how they can
communicate, when they can transmit, and when and what they can receive. However,
both architectures all share similar functions in that they transmit and receive data
according to some type of predefined standard.

This demonstrates two distinct differences from bus architectures. First, networks
have a defined transmit and receive function. This allows networks to continually pass
data into the network path and receive data without regard for control and operation
of the connection. This is different than a bus where strict flow control and arbitration
takes place with devices assuming control over the path. Second, networks enable
data transmissions over a long distance. Networks provide computers a method of
transmitting and receiving data over great distances without regard to the underlying
communications infrastructure. This requires network architectures to encapsulate the
data to be sent over various types of media and transmission circuitry.

Storage Networks: The Complete Reference

For the majority of networks today this is accomplished through a defined standard
called TCP/IP. As we mentioned previously, this is a layered approach to communication
functions that address all the requirements of transferring data from one device to
another while making the communications transparent to the computer’s application.
Figure 7-4 shows the standard layers of TCP/IP. However, underlying the complexities
of these functions is the simple concept of encapsulation and transmission. TCP provides
the functions for taking the data from the application and OS and wrapping them in a
form that will fit into the IP envelope. IP then acts as the envelope by putting the TCP
wrapper into the IP packet (nee envelope) and sending it into the network with the
appropriate addressing information.

The reverse happens on the receiving end. The IP functions receive packets
addressed to its host device and pass these to TCP. TCP unwraps the data and presents
it to the receiving application.

IP coramunications take place via multiple types of physical media. The media affects
the integrity of the communications, the speed of the transmission, and the distances
supported. Regardless of the media, the electronic standard that guides transmissions at
the wire level is Ethernet. Working from packet encapsulation architecture, data packets
once they hit the network vie for transmission time, resources, and priority. Obviously,
the most prominent performance characteristic is the size of the packet. Packet size is
determined by the implementation of Ethernet standards. These standards, as they are
implemented in vendor network devices, such as NICs, switches, and routers, support
this physical level of interface to the network. Capacities differ from standard Ethernet
connections to the multi-gigabit capacity for Gigabit Ethernet (Gbe).

Most application transactions that access the network (this includes the application
data, overhead of TCP/IP, and network error, recovery, and correction) will exceed the
packet size, even for Gbe networks. So, moving data from a server to a client or from a
server to a backup device can utilize larger and larger quantities of network bandwidth.
Given this condition, nearly all remote application transactions will be accomplished
through multiple packet transmissions.

Network Layei‘
P - '
Internet Layer E

i
[E— e o

Icp Host-to-Host Layer i

Applications ___ Process Layer] ; Applications

Applications Applications Applications

Figure 7-4. The standard TCP/IP layers and functions

Chapter 7: Connectivity Options

Similar in fashion to the bus, its bandwidth, addressing, and interrupt functions
also drive the network. However, major differences show up in interrupt functions (in
other words, how do I get access to the network and utilize its resources?). Additional
differences show up in the capacities of bandwidth, given the diversity of physical
media that networks have to traverse. Physical addressing, an integral part of a network’s
topology, also becomes diverse, driven by the particular implementation of the networking
standard a vendor’s devices are supporting (for example, fast Ethernet and gigabit
Ethernet).

The PCI Bus

As mentioned previously, today’s standard for connecting peripherals into the
motherboard is the Peripheral Component Interconnect (PCI). The operation is
straightforward with the PCI bus. PCI determines, through the use of the PCI
controller, the destination of the data. The destination could be local or to an expansion
slot. If it is destined to an expansion slot address, the host adapter takes over and
translates the protocol from PCI to host adapter protocol. This could be IDE, SCSI, USB,
or Firewire.

The importance of the PCI bus is that it decouples control of the data path to the
PCI bus itself. Therefore, it puts more performance responsibility on the PCI bus
components, and relies on its bandwidth and speed characteristics. Most PCI buses
today have a 32-bit bandwidth with various clock speeds ranging from 33MHz to
1GHz. The other importance of the PCI bus is its mezzanine architecture, whereby
expansion of the bus itself can take place, extending the scalability of the number of
peripherals connected.

The SCSI Bus

The most popular storage bus in use today is the SCSI bus. The Small Computer
System Interface (SCSI) is a standard that allows the connection of various cevices
through a parallel interface. Although the standard calls for support of multiple
devices, general usage has been to externally connect disk and tape systems to the
server. Given the bandwidth, addressability, and speed, it has become the defacto
standard for the external connection of storage devices into open computing systems
encompassing both UNIX and Windows.

The SCSI bus allows connections from eight to sixteen devices in a single bus. The
operation is through initiator and target architecture. Only two devices can use the bus
at one time. The initiator gains control of the bus and transfers the command to a device
on the bus. The receiving device is the target and processes the command. It then sends
a response back to the initiator. SCSI devices connected to the bus are identified by
their SCSI ID, which also serves as its address. The ID identifies the device’s priority
for arbitration—0 being lowest and 7 or 15 being the highest.

It is possible for one server to have multiple host SCSI adapters with access to
multiple SCSI buses. Although these, by convention, will have different SCSI IDs, they

Storage Networks: The Complete Reference

are completely separate as they communicate through the host adapter to the PCI bus.
As previously discussed, the software drivers assign the SCSI ID’s. However, the SCSI
controller provides the actual access to the physical device. The controller does this by
assigning each device a Logical Unit Number (LUN). This, in effect, virtualizes the
devices that are connected behind the controller.

Figure 7-5 depicts the most common SCSI configurations where servers with a
single initiator support multiple targets (such as controllers). In this configuration,
controllers support multiple LUNs or disks attached. Figure 7-6 also depicts a
configuration with multiple servers supporting multiple targets. Although each target
or controller is unique, multiple LUNSs are addressed with similar LUN addresses. This
works because the controllers own and direct each of their LUNS.

Computer/Host/Server
SCsI
Host

Adapter
D7

R

SCSI Bus

SCSI Disk Controller SCs1 SCSI Tape Controller with multiple
with multiple targets; - Disk ' Tape targets; controller directs
controller directs disk - Controller ~ Controller * tape addresses, tape drives as
drives as LUN 0 and 1. D1 IDO "LUNOand 1.

LUNO

Disk
LUN1 LUN1

Chapter 7: Connectivity Options

cPU] CPU E
SR S p— SN N —
Host i Host
Adapter Adapter
ID7 D6
& P EETTES EE S A R S
SCSI Bus E
Tape Controller
§ with multiple
SCSI Disk Controller . SCslI SCSI targets;
with multiple targets; ‘ Disk ' Tape controller directs
controller directs disk Controller E Controller tape addresses,
drives as LUN 0 and 1. ID1 D0 . tape drives as
LUNOand 1.
| Disk
LUNO
Disk
LUN 1 LUN 1

It’s a network... it’s a bus. .. no, it’s Fibre Channel. Fibre Channel is a layered connectivity
standard that has the characteristics of a bus, the flexibility of a network, and the scalability
potential of MIMD (multi-instruction multidata) configurations. In implementation, it uses
a serial connectivity scheme that allows for the highest level bandwidth of any connectivity
solution available today. This architecture allows for implementations to reach a burst rate
as high as 200 MBps for 1/O operations, with aggregate rates depending on workload and
network latency considerations. Regardless of the latency issues, this is a tremendous
enhancement to throughput over traditional bus connectivity.

:Storage Networks: The Complete Reference

Multi-instruction multidata computer taxonomy (known as MIMD) occurs where
multiple instructions are executed with operations on multiple data sources. This has
become synonymous with MPP computer configurations where parallel processing at
the CPU level and 1/O levels exemplify this theoretical term.

To say that Fibre Channel is a network architecture or that Fibre Channel is a serial
bus connectivity standard is an exercise for the esoteric debating society. Discussion
here will result in nothing more than a last word at the science club meeting. In all
fairness to the innovations surrounding Fibre Channel (FC), it was designed incorporating
the characteristics of both to meet the growing scalability requirements of computer
connections. It has accomplished this task in particular with storage systems.

The FC standard is implemented using a layered protocol consisting of five levels.
As depicted in Figure 7-7, the first three levels deal with the physical attributes. As
shown here, these are FC-0 through FC-2. These layers control the lowest level operations,
from media types supported, to signal encoding for transmission, to the encapsulation
and transmission control functions. FC-3 through FC-4 provide attributes for common
services and mapping to other protocols. The most popular so far being the SCSI and IP
mappings that support storage system operation and remote linking to IP networks.

FC can be implemented through three different topologies, as indicated in Figures 7-8,
7-9, and 7-10. These range from the most simple, point-to-point configurations, to the more
complex, albeit more powerful, fabric implementation. The Fibre Channel Arbitrated Loop

FC-0 Fﬁ
Physical Interface

®

FC-1

Encoding/Enca Pf_ulationi
FC-2

Data Delivery

FC-3
Common Services

FC-4 :
Tape Storage ______ Protocol Interface :Unix Computers
Windows RAID Mainframe JBOD
Computers Storage Computers Storage

’ ?hné”»’éyéfed"&?fﬁf:?hityecture ‘

Chapter 7: Connectivity Options

Ccry

R ST R

s

N FC
Host
Adapter

oo T

-
w@wm’mmmawmri

Disk
Controller

(FC-AL) topologies have served as a transitional move as FC storage systems moved from
FC Hub configurations, where the FC-AL provided access to the bandwidth benefits of the
protocol; however, the loop arbitration overhead sacrificed most of these enhancements.

Fibre Channel Operation

FC operates on a serial link design and uses a packet type of approach for encapsulation
of the user data. FC transmits and receives these data packets through the node participants
within the fabric. Figure 7-11 shows a simplified view of the FC fabric transmission
from server node to storage node. The packets shipped by FC are called frames and

are made up of header information that include addresses, user data (encapsulating

an incredible 2,192 bytes per frame), and error recovery code (ERC) information.

Storage Networks: The Complete Reference

3 k
CrU : CPU i
3 [
: 4
—— FC v e e FC smvavwE
Host A Host
Adapter | Adapter
= .
meé FC Fabric
FC FC
Disk Disk
Controller Controller

W Disk Disk

LUN 0 LUNO
L_ Disk Disk ___|
LUN1 LUN1

Each device that uses the FC Fabric is a node. FC provides both flow control and
addressing for nodes when they contact and log in to the fabric, as illustrated in
Figure 7-11 where Node 01 is assigned the port address of NO1-fabricl. This is the
N-Port address for the external device, in this case a Host Adapter for a server. This
is connected to Fabric port F-01 of the switch’s fabric (in other words, the fabric switch
with an address of FO1-fabricl is shown as a fabric port). The storage system is connected
using the same pattern.

The devices are controlled using calculations of available buffer space within each
device as well as knowledge of time sequences, thereby keeping frame overflows to a
minimum. Finally, the fabric itself executes under a predefined and supported class of
service. Of these classes, only two are appropriate for typical storage systems: Class 2
and Class 3. These define a network connectionless service this way: acknowledgement
of transmission is designated as Class 2; no notification of transmission is displayed as
Class 3.

Chapter 7:

Connectivity Options

Cru CPU
FL e I EC
Host Host
Adapter Adapter
R T R T
T e e s e el agent R Gaeacas T
\ |
T FC Fabric RE
R ‘ —
l T
T T
FC s FC
Disk i Disk
Controller Controller

Disk
LUNO
Disk
LUN1

fabric topology

) other |/0 Buses B

As peripheral devices increased in both number and diversity, the need to connect
these to the computer system quickly and efficiently also grew. With devices

such as digital cameras, larger external and removable storage devices, scanners,
printers, and network options, the diversity and flexibility of the traditional
computer bus was expanded to include support for all these devices. The systems
and storage industry responded with innovative solutions that enhanced and
implemented the traditional computer bus with serial technologies and higher
speed protocols such as Firewire. In this section, we discuss two of the most
popular bus evolutions: the Universal Serial Bus (USB) and Firewire. USB and
Firewire have been successful solutions in the workstation and PC industry. Other
evolutions to the traditional bus architecture are evident in the opposite side

of the spectrum in the super computer and parallel processing industries. These
technologies, driven by complex computational problems, have resulted in creative
architecture that bind multiple computers together applying their combined power.
These architectures are characterized by their creative bus implementation in

Storage Networks: The Complete Reference

fabric through Host
Adapter and transmits a
request to write to disk.

e Fabric validates Disk
Node address and login
and transmits disk write
request. === ==

* Disk Node acknowledges
successful write operation
and transmits back to
Server node.

e Fabric validates Server

Server Node Server Node E
* H
|
: FC s FC w‘_,E
p Host 1} Host
| Adapter -1 Adapter
I” 77 Node01 . . Node 02
I R R
i T R: 5 I_j ‘TJ
! T} Fabric F-01_ . i«F02 RI
LT Rt B N Fabric 02 R}
!k Fabric F-04 . Fabric F-03
* Server Node logs into : Tj

T
”“”" FC

_ |
Disk]
Controller !
Node

[
ok

Disk
LUN O

Disk
LUN 1

Node address and login
and transmits acknowledge
message. - - - -

connecting hundreds of processors and peripheral devices together. We summarize
some general configurations in our discussion of these creative bus strategies.

USB and Firewire

Like the SCSI standard, the Universal Serial Bus (USB) and IEEE1394 standard,
Firewire, was developed into a product to serve the multiple and diverse types of
external devices that can interface with a single PC or workstation user. Used almost
entirely for single user systems, the bus concept is similar to SCSI in terms of a host
adapter translating PCI communications to USB or Firewire adapters whose protocols
communicate within serial bus architectures. One of the differences is the support for
the diverse and often disparate number of peripheral devices requiring connection to
single user systems. These devices range from mice to joysticks to optical scanning

Chapter 7: Connectivity Options .

equipment. With the exception of CDs, storage has come Jate to this area and remains
lacking in providing levels of functionality needed for server level implementation.

Both of these solutions are ways of expanding the I/O capability of computers;
however, the use of USB or Firewire disks for large-scale commercial use has not taken
hold. Although this came about for many reasons, it is primarily due to the direction
the USB standard took to support asynchronous and isochronous data transfers within
a half duplex architecture. This limited performance for any bandwidth gains provided
by a serial connection. In addition, disk marufacturers have not supported the serial
interface and command structure used with disk drive functions. Finally, the limiting
number of devices that can be addressed and the inability to deal with advanced storage
features such as controller/LUN functions and RAID partitioning will continue to
orient USB toward the single-user PC market.

Creative Connection Strategies

There are many ways of connecting peripherals to the server. Using the bus, network,
and hybrid technologies that we discussed earlier, these strategies/implementations
have evolved from the exotic innovations of supercomputing, alternatives to symmetrical
multiprocessing (SMP), and developments within distributed computing architectures.
All of these provide some type of high-speed interconnect between computing nodes
that enable increased parallel computing tasks, allow support for larger workloads and
increased data sizes, and which give way to increased overall performance scalability.
These interconnects can be characterized as implementations of various bus and network
technologies that produce non-standard configurations. Generally, these implementations
demonstrate characteristics of a network with sophisticated data distribution functions
that leverage specific CPU architectures (for example, IBM RISC-based systems, SUN
Sparc systems, and Intel CISC systems).

There are three general types of high-speed interconnect topologies that have been
commercialized. These are the shared nothing, shared I/O, and shared memory models.
These models supplement the basic components of computer systems (for instance,
RAM, CPU, and internal Bus), and provide an extension to a tightly coupled or loosely
coupled set of distributed computer systems.

Shared Nothing

Figure 7-12 illustrates the configuration of a shared nothing system. These systems
form the foundation for Massively Parallel Processing (MPP) systems, where each
computer node is connected to a high-speed interconnect and communicates with
nodes within the system to work together (or in parallel) on a workload. These
systems generally have nodes that specialize in particular functions, such as database
query parsing and preprocessing for input services. Other nodes share the search for
data within a database by distributing it among nodes that specialize in data access
and ownership. The sophistication of these machines sometimes outweighs their
effectiveness, given that it requires a multi-image operating system (for instance,

Storage Networks: The Complete Reference

N A N e

RAM e S RAM ¢
- Memory i . . Storage i] Storage : . Memory F '
CPU Operating System § . Operating System CPU '[
Host Adapter Host Adapter|

High-Speed Interconnect P
""""" VVT“'“’““’“vm.,W,v_RW e W,g«.f@"fv

- v :
Host Adapter | Host Adapter £
e m——] - b : S
CPU Operating System é Operating System CPU %
= RAM oo /rwm-g — e RAM -

Memory | Storage Storage : Memory |

R

—

an OS on each node), sophisticated database and storage functions to partition the
data throughout the configuration, and the speed, latency, and throughput of the
interconnect. In these systems, both workload input processing and data acquisition
can be performed in parallel, providing significant throughput increases.

Shared 1/0

Figure 7-13 indicates the configuration of a system that has shared 1/0. Although more
common than the MPP machines, the shared 1/O requires the computer systems to
share a common I/O bus and therefore extend the capability to provide additional
access to larger amounts of data. Operation of these machines requires that a single
image operating system control the operation of I/O and application processing across
the computing nodes and shared /0. These systems offer enhanced access to large
amounts of data where 1/0 content can be large and multiple computing nodes must
operate in parallel to process the workload.

Shared Memory

Figure 7-14 shows the most common of alternative interconnects: the shared memory
model. This makes up most of the high-end SMP machines where multiple CPUs share
a large RAM, allowing CPUs to process workloads in parallel with enhanced performance
from a common RAM address space that’s both physical and virtual. Also operating
under a single image operating system, these systems enhance the capability to process
workloads that are high-end OLTP with small I/O content.

Chapter 7: Connectivity Options 113

RAM
Memory &

RAM
Memory
T Operating Svstem - Operating Sy=fem Py
Py P &7 P B CPuU

) Host Adapterw o

SRR

Host :\dapter{(.

High-Speed Interconnect

-

Storage -~ Storage

. A ‘éhared I—/G highspeed ih?ér¢annect

Shared RAM Memory I

CPU < . Operating System » CPU

Host Adapter .

- Host Adapter

High-Speed Interconnect

gy e - TS AT R = b T S

g A -

. A

Storage | Storage

shared e nory h;gh-speedmterconnect Sits

